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An array of closely spaced, aligned, turbulent, incompressible jets is effectively 
simulated by a line momentum source. In  a shallow inviscid fluid, such a source 
induces a predominantly two-dimensional non-diffusive flow which is irrotational 
except along lines of velocity discontinuity downstream of the source. The flow can 
be generated by a distribution of line vortices of unknown strength along the 
unknown slipstreamlines. Based upon this vortex model, kinematic and dynamic 
conditions along the slipstreamlines are formulated, and the two resulting nonlinear 
singular integral equations are solved numerically using a Newton-Raphson-type 
iterative collocation method. 

The flow field shows a marked resemblance to that induced by a nonlinear actuator 
disk. For the case of no ambient current, experimental results indicate that the 
slipstreamlines emanate from points which are close to, but not a t  the ends of, the 
source. As the ambient current strength increases, a dividing streamline appears in 
the induced sink flow upstream of the source, and the points from which the 
slipstreamlines emanate move closer to the ends of the source. Further increases in 
the current strength result in the smooth blending of this dividing streamline with 
the slipstreamline. 

Laboratory experiments performed in a shallow water basin confirm all of the 
features predicted by the theory. 

1. Introduction 
The injection of an aligned series of submerged, high-velocity, turbulent, incom- 

pressible jets into a shallow inviscid fluid of similar constant density p is shown 
schematically in figure 1. The ambient fluid, infinite in horizontal extent and of 
uniform (undisturbed) depth H ,  is bounded by a flat solid bottom and a free surface. 
When closely spaced, these multiple jets form a line momentum source which effects 
rapid mixing with the ambient fluid and significantly modifies the ambient flow. 

Such multiple-jet configurations are increasingly being adopted as mixing devices 
for the disposal of cooling water from steam electric-power stations located near 
shallow coastal waters. With source flows typically of the order of 100m3/s and 
discharge jet velocities as high as 5 m/s or more, the large momentum imparted in 
depths of 5-10 m can lead to flows comparable to those in large rivers entering the 
coastal zone. The velocities so induced may also have significant effects upon coastal 
sediment transport and coastal morphology over large regions. 

Whereas turbulent incompressible free jets and their various applications have been 
studied extensively (e.g. Abramovich 1963 ; Schlichting 1968 ; Albertson et al. 1950; 
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FIGURE 1.  Line momentum source consisting of a series of high-velocity, turbulent, 

incompressible jets in shallow fluid. 

Fischer et al. 1979), the mechanics of the flow generated by the interaction of multiple 
jets in the presence of a free surface has received scant attention. Consider the case 
in which the ambient fluid is otherwise quiescent. In  the absence of boundary effects, 
it has been shown experimentally by Knystautas (1964) that the closely spaced, 
multiple, interfering, turbulent, axisymmetric jets acting independently lose their 
individual character and form an essentially two-dimensional jet by approximately 
twelve jet spacings downstream. I n  a fluid confined vertically, however, the outer 
jets deflect toward the centreline of the jet group as a result of the pressure field set 
up by the potential entrainment flow outside the individual jets (Taylor 1958). Such 
tendency for the jets to merge has been observed experimentally by Baines & Keffer 
(1974) in a study of an axisymmetric group of air jets, by Miller & Comings (1960) 
for dual slot jets, and also by Lee & Jirka (1979) in experimental investigations of 
shallow-water jets. This zone of jet interference, in which the source momentum is 
transferred to the ambient fluid by jet diffusion, is also associated with an adverse 
pressure gradient for increasing x. The length x, of this merging-jet region depends 
upon the depth H ,  the jet spacing s and the height h, of the jets above the bottom. 
For closely spaced jets near the bottom, the length can be estimated as 2, x H / k ,  
where k is the spreading angle for a free turbulent jet, neglecting the effects of pressure 
gradient and jet interference. For k z 0.1 (Schlichting 1968; Davis & Winarto 1980) 

If the source length L is large compared with the depth H ,  L / H  9 1, the highly 
complicated three-dimensional flow in the momentum-transfer region will not be 
important in an account of the flow leading to the ultimate two-dimensional jet, and 
a horizontal flow situation can be assumed in which the overall induced flow is 
determined by the multiple jets acting together as a line momentum source. This 
paper is concerned with the two-dimensional velocity field generated by such a line 

5,  x 10H. 
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momentum source aligned with an ambient current U in a shallow fluid. A pressure 
discontinuity is created, across the line source, by the momentum flux per unit length 
pm, and the resulting flow is essentially a two-dimensional analogue of the nonlinear 
actuator disk encountered in propeller theory. A qualitative indication of the flow 
within the slipstream was given earlier by Lee (1980), based upon an a priori 
assumption of the induced velocity distribution at the source line. 

2. Theoretical development 
2.1. Development of vortex model 

Assuming that LIH $ 1,  we adopt the results of the classical shallow-water theory, 
namely that the flow is planar and that the pressure p(x, y, z )  is given by the 
hydrostatic distribution 

where p is the fluid mass density, g is the acceleration due to gravity, and h(x, y) is 
the free-surface height above the bottom. (However, we also require that LIH not 
be excessively large, say LIH < 100, so that  bottom-frictional dissipation can be 
neglected.) 

Applying the Bernoulli equation along the bottom ( z  = 0), first between a point 
far upstream and a point (0- , y, 0) on the upstream side of the line source, then 
between (0+ , y, 0) and a point far downstream, subtraction and addition of these two 
equations yields 

P = Pg[h(X,Y)--l, (1) 

and 
1 

a[h(O + , y) + h(O - , y)] = H + - [ u2 -t U L  -u2(0-, y) - u2(0 + , y) - 2v2(0, y ) ] ,  
49 

(3) 

where the fluid velocity q = u(x,  y) f+v(x, y ) j  - u,(y) fasx-too within the slipstream, 
and 

W y )  h(O+, Y) - h(O-, y) (Iyl < iL). (4) 

(Note that we have not written &(y) in (2) and (3), since U L  is evaluated on the 
streamline passing through (0, y), and the y-coordinate of this streamline decreases 
as x + m ,  as sketched in figure 2.) I n  deriving (2) and (3) we have noted that 
v(0 + , y) = v(0- , y), but have allowed for u(O+ , y) + u(0- , y) by virtue of the fact 
that the multiple jets act as a line mass source (as well as a line momentum source). 

At this point we introduce two assumptions. Observing that the mass and 
momentum inputs are independent quantities, and that the momentum-induced flow 
is typically much larger than the source-induced flow, we assume that the multiple 
jets act as a line momentum source but not as a line mass source. Subject to this 
assumption, which will be made precise a t  the end of 52.2, (2) becomes 

1 
Ah@) = - (u& - U2) .  

29 

Secondly we assume that 
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everywhere in the field, as occurs under typical operating conditions, in which case 
(3) becomes 

=!j[h(O+, y) + h(0- , y)] = H. (7) 

Next we apply a momentum balance just across the line source (i.e. on the fluid 
between x = 0- and x = 0 + , between y and y+ Ay, and between z = 0 and 
z = h(x, y))  and, using (6) and (7),  obtain 

m 
Ah(y) = - 

9H’ 

where rn = utao/s is a constant. Here u,, is the jet velocity and a, is the jet cross- 
sectional area (figure 1). I n  physical terms, (8) expresses a force balance between the 
net pressure force pgHAh(y) per unit y-length and the force pm per unit y-length 
exerted on the fluid by the jet nozzles. 

From ( 5 )  and (8) follows the important conclusion that 

u,(y) = constant = u, (9) 
within the slipstream. 

Now q - u, i implies that  V x q+O as x-tm within the slipstream. From 
Helmholtz’s theorem it follows that V x q = 0 everywhere within the slipstream. 
Likewise, V x q = 0 everywhere outside the slipstream since q - Uiat infinity, so that 
the vorticity springing from the momentum source must be confined to the slipstream 
boundary y = +f(x) (0 < x <a), as sketched in figure 2. The unknowns of the 
problem may thus be considered as the slipstream boundary shapef(x) and the vortex 
density y ( x )  (i.e. the circulation per unit x-length) along that boundary. 

Before proceeding, let us re-emphasize the independence of the momentum and 
mass inputs by noting that we can increase u, and decrease a, such that Ah (which, 
according to (8), is proportional to the momentum flux) is held fixed while uOaO (and 
hence the mass flux) tends to  zero. Finally we note that our shallow-water-theory 
assumptions must break down in the neighbourhood of the source line owing to  the 
jump discontinuity in h(x, y),  though this local breakdown may be no more serious 
than our willingness to ‘smear out ’ the discrete inputs into a continuous source line. 

2 .2 .  Governing equations 

There are two conditions governing f(x) and y ( x ) :  a kinematic condition that the 
slipstream boundaries y = +f(x) (0 < x < co) be streamlines, and a dynamic condition 
that the pressure be continuous across these ‘slipstreamlines ’. Now the stream 
function @(x,y) induced a t  (x ,y)  by a vortex of unit strength (positive counter- 
clockwise) a t  ( E , ? )  is 

(10) 
1 
471 1Cr(x,y) = ---n[(E-~)2+(r-y)21. 

Thus, superimposing the free stream U and the slipstreamline vorticity, we have 

As x+co the velocity induced by’ the vortex sheets is the same as that induced by 
two straight doubly infinite vortex sheets: one along y = f, with vortex density y, 
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FIGURE 2. Vortex model of slipstream. 

counterclockwise, and one along y = - f, with vortex density y, clockwise, where 
f, and y, denote the asymptotic values off(x) and y(z)  as x+w. The velocity field 
(u, v)  induced by such sheets is easily shown to be (0,O) for IyI >f, and (y,, 0) for 
IYI .c f,. Thus 

$r[Gf(41 - (U+Y,) f ,  = ~,f, (13) 

as x +CO, and so the kinematic condition $[x, f(x)] = constant becomes 

Turning to the dynamic condition, if we write Bernoulli's equation (along z = 0) 
twice - once on either side of the slipstreamline - and difference these equations, we 
obtain 

m 
j j  = HP2[", f(4 - 1 -P2[", f (4  +I> 

= KP[., f (4  - 1 + P[.> f(4 + I> M x ,  fW- 1 -P[S, fC.1 + I> 
= dx, fC41 Y&L 

(15) 

where y,(z) is the circulation per unit arclength s (measured positive downstream), 
and is related to y ( x ) ,  the circulation per unit x-length, according to 

Thus (15) becomes 
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m 
H - = (U+iY,)Y,, 

so that we may solve, a priori, for ym in terms of known quantities, as 

y, = ( V + $ ) L .  

Finally, u = a+/ay, so we have, as the final form of the dynamic boundary condition, 

Equations (14) and (20) are coupled, nonlinear, singular integral equations in the 
unknowns f(z) and y ( x )  ; the kernels admit the singular behaviour 

1 
G[E, f ( 5 )  ; x, f(4l = ( 6 - 4 1 9  GY[5, f(0 ; 2, f(x)l = 0 (G) (21 a ,  b )  

as [+x. 
We now non-dimensionalize as follows : z* = x / + L  and similarly for 5, y, f and f, ; 

y* = y/y ,  ; U* = U/u,, where we recall that u, = U +  y,. Henceforth omitting the 
asterisks, for notational simplicity, (14) and (20) become 

and 

respectively. 
Finally, now that we have obtained the induced velocity 

u,-U= y, = [Vz+(2m/H)]i-UU, 

for reference, we can state our assumption that the mass source is negligible in terms 
of known quantities in the form uo ao/Hs 4 u, - U ,  or 

Q 1 .  a 0  a 0  €E 

Hs[(  v + y -  u] 
(24) 

2.3. Numerical solution 
The governing equations (22) and (23) are solved numerically using a Newton- 
Raphson-type iterative collocation scheme previously employed in nonlinear actuator- 
disk theory (Greenberg 1972). 

First we express the nth iterate of the slipstreamline shape in the form 

where thef,(z) basis functions are chosen as 

fj(x) = e-js. 
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For the vorticity we express 
N 

j=l 

where 

P y x )  = 1 + [f""(X)]Z , [ I 
and the gj(x) basis functions are chosen as 

The reason we include the T(")(x) in (27) is that the square-bracketed portion of the 
right-hand side is then the circulation per unit arclength, which should be more 
gradually varying than y(")(x), near x = 0, in the event that there is a strong 
slipstream contraction a t  the 'lip', i.e. in the neighbourhood of x = 0. And the x-: 
is included in gl(x) because we need to allow for the square-root singularity dictated 
by the singular nature of the kernels, (21), as in the classical two-dimensional airfoil 
theory. 

Rather than use (22) and (23), together, to solve forf(n+l) and f n + l ) ,  we use (22) 
to computef(n+l), then (23) to compute y("+l), and so on. Though this scheme may 
compromise speed of convergence, it substantially reduces the computation time per 
iteration, and simplifies the programming. Following the quasilinearization idea of 
Newton-Raphson, we expand 

G(n+l) x G(n) + aG(n) B I f (n+l)  (6) -f'"'(5)] +/3GP' If("+l)(~) -f'"'(~)] 
(30a) 

in (22), and 

in (23), where a and /3 are included as 'convergence factors', and GF), for example, 
denotes G$, f("'(6) ; x, f(")(x)]. Thus (22) and (23) become 

and 

respectively. Putting (25)-(29) into (31) and requiring satisfaction at M prescribed 
points xkj ( j  = 1, ..., M )  yields M linear algebraic equations in the new 'shape 
coefficients' b$"+l) ( j  = 1 ,  ..., M ) .  Similarly, putting (25)-(29) into (32) and requiring 
satisfaction at N points xdj (j = 1, ..., N )  yields N linear algebraic equations in the 
new 'circulation coefficients' aJfl+l) ( j  = 1, . . . , N ) .  Details of the algorithm are given 
in Lee (1982). 
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Initializing f(O)(z) = 1 and y(O)(x) = 1, the scheme is found to work for all ambient 
currents 0 < U < 1, with optimal convergence rate corresponding to the choice a x 0, 
p x 2. This result may be interpreted physically, for i f a  = 0 and p = 2 then 

The first term on the right-hand side of (33) is the slipstream flow (over the 
half-slipstream 0 < y < f ( x ) )  passing the section [ = x, induced by y(n)  onf(n). The 
second term provides a correction to this flow due to the iterative change in slipstream 
width ; jr G r )  y(n) d[ is the x-velocity on the slipstreamline, which is approximately 
half the x-velocity just inside the slipstream (exactly, in fact, as x+co), so that 
2 s,“ G r )  f n )  d[ is approximately the x-velocity just inside the slipstream. 

The choices M = 8 ,  N = 9 were found to suffice, and convergence was achieved in 
at most seven iterations, when the successive iteratesaf(n), fn+ l )  and y(n) ,  y(n+l) were 
asked to differ by less than 0.5 % at a large number ofx-points. The left- and right-hand 
sides of (22) and (23) were then found to agree, uniformly in x, to at  least 3 significant 
digits. 

2.4. Numerical results 
Results are displayed in figure 3 and table 1 for the case U = 0, and the corresponding 
flow field is shown in figure 4(a); the cases U = 0.1 and U = 0.286 are depicted in 
figure 4 (b ,  c )  respectively. Finally, the u- and w-velocity distributions at the line source 
(x = 0, 0 < y < 1)  are shown in figure 5 .  

The following points may be made. 
(i) The slipstream contraction is strongest for U = 0, and reduces to zero as U+ 1.  

As a quantitative check, we note that it may be shown, a priori, by a global 
2-momentum balance, that 

f, = k(l+ U ) ,  (34) 

so that U = 0 gives f, = 0.5, i.e. a 50 yo contraction. By comparison, our computed 
value off, (for U = 0) is 0.554, and the agreement becomes closer and closer as U 
increases (table 2). The difference between the iteratively computed f, and that 
computed from (34) is further discussed in $3.2. 

(ii) The ultimate slipstream values (i.e. those a t  z = co) are essentially attained -- 
even for the most severe case U = 0 - by around x = 2. 

(iii) We see from figure 4(a) that if U = 0 then all of the flow is drawn through 
the line source. If, for reference, we denote the positive x-direction as ‘downstream ’, 
then even the fluid particles just barely outside the slipstream (i.e. x > 0 and y slightly 
greater thanf(x)) move upstream, slowly; they gain speed as they approach the 
vicinity of the lip, ‘turn the corner ’ and pass across the line source, and move quickly 
downstream. For U > 0, however, the streamline @ = 1 divides the field into two 
parts: one part is the flow that crosses the line source and enters the slipstream, and 
the other part is the flow that moves downstream outside of the slipstream. As U+ 1 
the streamline @ = 1 is simply y = 1 ( -  00 < x < 00). In  that case f(x) = 1 and 
y,(x) = y ( x )  = 1. It is only in that limiting case that the square-root singularity in 
ys and y disappears (table 2). 

(iv) For the special (important) case U = 0, we see from (22) and (23) that the 
non-dimensional f- and y-distributions, and hence the streamline pattern, are 
independent of the ‘loading’ m / H .  It is only the dimensional velocities that vary in 
proportion to ym and hence (recall (19)) in proportion to (m/H)k 
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t I 
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FIGURE 3. Successive iterates for U = 0: (a) slipstream shapef(@(z); ( b )  circulation strength per 
unit arclength #)(z). Solutions are graphically indistinguishable after the fifth iteration. 

(v) Note that q(0, y) -+a as y-+ 1,  so that our assumption (6), and the implied result 
(7),  are invalid near the tip of the line source - over 0.97 < y < 1 ,  say. It is our view 
that this discrepancy is tolerable since it is so limited in extent. 

(vi) The features noted in (i)-(iv) are almost identical with those found in the 
nonlinear actuator-disk theory (Greenberg 1972), so that one can, at least qualitatively, 
think of the line-source flow as a plane-flow version of the axisymmetric nonlinear 
actuator-disk flow. 

3. Experiments 
3.1. Experimental design and equipment 

Experiments were designed to study the two-dimensional velocity field of a line 
momentum source in a 3 x 4 m shallow water basin 0.3 m deep. The line momentum 
source is simulated by a large number of closely spaced nozzles mounted on top of 
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Shape coefficient b, 
j = 1 ,  ..., 8 

0.218276 x lo-' 

0.794 853 
-0.287096 

0.478 161 x 10 

0.422235 x lo2 
-0.358453 x lo2 

0.117970 X lo2 

-0.230399 X lo2 

Circulation coefficient a, 
j = 1 ,  ..., 9 

0.177601 
-0.235269 X 10 

0.168631 x lo2 

0.268 108 x los 
-0.528318 x lo3 

0.593562 x lo3 
-0.348323 x lo3 

0.836881 x lo2 

-0.815639 X lo2 

X 

0.020 
0.040 
0.060 
0 080 
0.100 
0.200 
0.300 
0.400 
0.500 
0.700 
0.900 
1.200 
1.500 
2.000 

f(4 
0.9535 
0.9148 
0.8824 
0 8548 
0.831 0 
0.747 6 
0.6947 
0.657 3 
0.630 1 
0.595 7 
0.5767 
0.562 2 
0.5563 
0.5539 

Y A X )  
1.681 5 
1.3798 
1.2699 
1.2174 
1.1895 
1.1476 
1.1298 
1.1160 
1.1079 
1.1020 
1.0959 
1.0830 
1.0753 
1.0693 

Collocation points: 
xk l :  0.03, 0.08, 0.18, 0.38, 0.68, 1.10, 1.60, 2.20 
xdl: 0.02, 0.05, 0.10, 0.18, 0.30, 0.50, 0.80, 1.40, 2.20 

TABLE 1.  Computed solution of slipstream shape f(x) and circulation distribution 
y,(x); U = 0, f m  = 0.5535, yrn = 1 

a manifold device placed in a centre channel, with the top flush with the smooth 
concrete floor of the basin. Specifically, 40 nozzles (made from brass tubes of 3.56 mm 
inner diameter and 4.2 mm outer diameter), spaced at centre-to-centre distance 
s = 25 mm, discharge high-velocity turbulent jets horizontally at about h, = 4 mm 
from the bottom (figure 1 ) .  The ratio of the total nozzle cross-sectional area to the 
cross-sectional area of the manifold is sufficiently small to  ensure uniform efflux from 
all the nozzles. Discharge flow is fed into both ends of the manifold from a constant- 
head tank, with the same flow withdrawn a t  the far end of the basin to maintain 
constant depth during the experiment. Flow rates, large enough to produce 
measurable velocities near the source, are monitored by two rotameter-type flow 
meters. 

Point velocity measurements are made using a calibrated propeller current meter 
positioned at mid-depth and mounted on a movable platform which can run along 
the length of the basin. In  addition, streamline and pathline patterns are also recorded 
photographically against a 20 cm square grid marked on the bottom. The length L 
of the source, which can be varied by restricting flow from the desired number of 
nozzles, is made small compared with the basin width W (L/ W < i )  in order to 
essentially eliminate lateral-boundary effects. The experimental parameters for the 
five experiments carried out with no ambient current are listed in table 3. For further 
details the reader is referred to Lee (1982). 

3.2. Comparison of theory with experiments 

The flow field, made visible by paper chips on the water surface, is illustrated in figure 
6, which shows the observed streamline patterns immediately after the experiment 
is started, and at steady state. These photographs (exposure 0.5 s) were taken with 
a Nikon camera mounted 2.3 m directly above the multiple jets. Two start-up 
vortices are clearly observed at the points of minimum pressure. In the steady flow 
field the converging sink flow upstream of the source, the separation of the slipstream, 
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Velocity 
scale 

O T 5  

2 2 

Velocity 
scale 

0 0.5 
U 

X 

FIQURE 4. Computed streamlines over representative domain: (a )  U = 0 ;  ( b )  0.1; ( c )  0.286. 
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[I = 0.532 

0.286 

0.1 

0 

Y 

FIGURE 5. Computed velocity distribution at line source: (a) u(0, y); ( b )  w(0, y) 

and the ultimate jet are all clearly discernible. Observing the shallow-water flow from 
above (figure 7), two surface depressions (shown schematically as dotted circles) are 
noted a t  y x f0.9, with the end jets strongly bent inwards towards the centre of the 
jet group. According to our theoretical model, however, the highest velocities, and 
lowest pressures, occur at the lips x = 0, y = f 1 ,  which is where we would therefore 
have expected to find the two surface depressions. The experimentally observed 
displacement of these points to the locations A(y = - w) and B(y = + w) suggests that 
in our theoretical model the line of pressure discontinuity should be considered to  



U 

0 
0.1 
0.2 
0.286 
0.532 
0.7 
0.8 

Number of 
iterations 

n a1 

7 0.177601 
5 0.153 505 
5 0.128319 
4 0.984249 x 10-1 
3 0.323806 x 10-l 
3 0.154544 x 10-l 
2 0.960482 x 

Iteratively 
computed 

0.5535 
0.591 5 
0.6293 
0.6636 
0.7708 
0.851 5 
0.900 7 

fcc 
f m  given 
by (34) 
0.5 
0.55 
0.6 
0.643 
0.766 
0.85 
0.9 

TABLE 2. Variation of number of iterations, circulation singularity 
strength, and contraction with U 

Experi- 
ment 

1 
2 
3 
4 
5 

Number 
of nozzles 

N 

20 
20 
20 
24 
24 

Flow rate 
Qo = NUO ao 

(W) 
600 
750 
900 
750 

1050 

Nozzle 
spacing 

2.5 
2.5 
2.5 
2.5 
2.5 

3 (om) 

Water 
depth 

H (cm) 
2.0 
2.0 
2.0 
2.4 
2.4 

Je t  
Reynolds number 

Discharge U O D  

L u, velocity - 
Ro = 

~ 

uo (cm/s) D = 3.56 mm H (cm/s) 

83.9 2980 26.4 16.7 
104.9 3730 26.4 20.9 
125.9 4480 26.4 25.1 
87.4 3110 24.0 15.6 

122.4 4350 24.0 22.3 

TABLE 3. Summary of experimental parameters 

extend from A to B (figure 7). (Recall that we have neglected the three-dimensionality 
of the flow in the momentum-transfer region and, a priori, adopted the source length 
L as the length of the line of pressure discontinuity in our formulation.) The entire 
theoretical development leading to the dimensionless governing equations (31) and 
(32), along with the results given in $2, remains intact-except that the non- 
dimensionalizing length ?jL is replaced by w. Further, we note that the dimensionless 
width of the ultimate jet f,/0.5L is given exactly by the global momentum balance 
(34) regardless of the flow details near the source. Consequently, this physical 
interpretation of our model permits a prediction of the location of the slipstream lips 
as w 0.5 

0.5L f, 
- = - (1 + U ) ,  (35) 

wheref, is iteratively computed from (31) and (32) (table 2). Equation (35) and the 
numerically computedf, (table 2) show that for the strongest slipstream contraction, 
namely the case U = 0, we have w/0.5L = 0.9, and that the slipstream lips approach 
the ends of the source as U increases. 

The measured and computed flow fields agree in all of their main features, and 
quantitatively the agreement is to within differences of around 10 %. The fact that 
such converging flow geometries, qualitatively quite similar to the classical Borda 
mouthpiece, can arise in the vicinity of high-velocity jets discharged in proximity 
to the free surface has also been pointed out previously by Streiff (1950) in connection 
with test results of model underwater spilling tubes. 



300 J .  H .  W. Lee and M .  D. Greenberg 

FIGURE 6 (u, 6 ) .  For caption see facing page. 

The velocity profile across the ultimate jet (figure 8) at z = 2 shows a plateau region 
about half the width of the line source, with a sharply falling edge indicative of 
turbulent diffusion - a real-fluid effect not accounted for in our present formulation. 
Maximum velocities are, in general, around 10 yo below predicted values. The 
computed 2-velocity a t  the source, u(0, y), is compared with the experimental 
measurements in figure 9(a ) .  Here the non-dimensionalizing u, is taken to be the 
average measured velocity in the plateau region of the ultimate jet, and u(0, y) is the 
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FIGURE 6. (a) Top view of multiple-nozzle arrangement for simulation of line momentum source 
(experiment 3); end nozzles are indicated by bright stripes. ( b )  Observed start-up vortices near 
5 = 50.5 immediately after start of experiment (experiment 3). (c) Steady streamline patterns of 
a line-momentum-source-induced flow (experiment 3). 

average of the measured velocities a t  two symmetrical y-positions. The y-velocity 
cannot be measured at x = 0 owing to the obstruction of the nozzles. Measurements 
of v a t  x = -0.16 show the same sort of agreement when compared with predicted 
velocities in figure 9 ( b ) .  

Because of the relatively small size of the present laboratory basin, experiments 
with a uniform coflowing current cannot be satisfactorily performed. However, 
previous experimental observations of flow patterns by Lee, Jirka & Harleman (1977) 
for a wider range of L/H in a much larger hydraulic model basin do indicate a t  least 
qualitative agreement with the calculated flows. I n  particular, for U = 0.046 a clear 
inward-directed sink flow from the surrounding fluid upstream of the multiple jets 
is noted, in accord with the present computations. 

The results of this study suggest that a further comprehensive experimental 
investigation of line momentum sources in an ambient current is warranted. Detailed 
velocity measurements a t  key points in the induced flow in a large experimental basin 
will be a worthwhile undertaking. 

4. Concluding remarks 
Multiple jets in confined depth have been treated as a line momentum source in 

this study. In  the presence of a free surface the induced flow is predominantly 
two-dimensional, and can be calculated by a line-vortex model of the slipstreamlines. 
The computed flow, which is quite different from that of classical free jets, is shown 
to be accurate up to very close to the slipstream lips. 

Whereas the effect, of jet buoyancy has not been addressed in this paper, the present 
results are applicable for multiple weakly buoyant jets into restricted depths, such 
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as cooling-water discharges into shallow receiving waters. Jirka & Harleman (1  979) 
and Lee & Jirka (1980) have shown that weakly buoyant jets in confined depth tend 
to exhibit an unstable configuration, and become uniformly mixed over the ambient 
depth. As a first approximation i t  is often possible to neglect the discharge buoyancy 
altogether, so that the flow dynamics near the source are governed purely by the 
momentum source represented by the high-velocity injection. 

The success of the present theoretical approach suggests extension to  the case in 
which the ambient current is misaligned with the source momentum. 

Only towards the completion of this paper did we come across a somewhat related 

FIGURE 8. Measured velocity profile at x = 2 (all lengths non-dimensionalized 
by the half-source length 0.55). 
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PIQURE 9. Comparison of predicted velocities near momentum source with experimental values: 
(a )  2-velocity at source line; ( b )  y-velocity at x = -0.16. 

work by Lighthill (1979) in connection with animal hovering in ground effect. In  his 
paper a plane version of the classical actuator-disk model is modified by the inclusion 
of an artificial vertical boundary to shield the slipstream from the outside sink flow. 
The fluid motion induced by the hovering object in still air is then obtained by 
conformal mapping, and its resemblance to the Borda-mouthpiece flow patterns are 
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discussed. The theoretical approach in the present paper circumvents the need for 
such an artificial boundary. 

This work was supported by an Engineering Research Initiation Grant from the 
U.S. Engineering Foundation and in part by a research grant from the University 
of Hong Kong. All numerical computations were done on an IBM 3031 machine at  
the Computer Center of the University of Hong Kong. The writers are indebted to 
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